1 module xkbcommon.xkbcommon;
2 
3 // original copyrights from libxkbcommon
4 /*
5  * Copyright 1985, 1987, 1990, 1998  The Open Group
6  * Copyright 2008  Dan Nicholson
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a
9  * copy of this software and associated documentation files (the "Software"),
10  * to deal in the Software without restriction, including without limitation
11  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12  * and/or sell copies of the Software, and to permit persons to whom the
13  * Software is furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
21  * AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
22  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
23  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24  *
25  * Except as contained in this notice, the names of the authors or their
26  * institutions shall not be used in advertising or otherwise to promote the
27  * sale, use or other dealings in this Software without prior written
28  * authorization from the authors.
29  */
30 
31 /************************************************************
32  * Copyright (c) 1993 by Silicon Graphics Computer Systems, Inc.
33  *
34  * Permission to use, copy, modify, and distribute this
35  * software and its documentation for any purpose and without
36  * fee is hereby granted, provided that the above copyright
37  * notice appear in all copies and that both that copyright
38  * notice and this permission notice appear in supporting
39  * documentation, and that the name of Silicon Graphics not be
40  * used in advertising or publicity pertaining to distribution
41  * of the software without specific prior written permission.
42  * Silicon Graphics makes no representation about the suitability
43  * of this software for any purpose. It is provided "as is"
44  * without any express or implied warranty.
45  *
46  * SILICON GRAPHICS DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
47  * SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
48  * AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL SILICON
49  * GRAPHICS BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL
50  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
51  * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
52  * OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION  WITH
53  * THE USE OR PERFORMANCE OF THIS SOFTWARE.
54  *
55  ********************************************************/
56 
57 /*
58  * Copyright © 2009-2012 Daniel Stone
59  * Copyright © 2012 Intel Corporation
60  * Copyright © 2012 Ran Benita
61  *
62  * Permission is hereby granted, free of charge, to any person obtaining a
63  * copy of this software and associated documentation files (the "Software"),
64  * to deal in the Software without restriction, including without limitation
65  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
66  * and/or sell copies of the Software, and to permit persons to whom the
67  * Software is furnished to do so, subject to the following conditions:
68  *
69  * The above copyright notice and this permission notice (including the next
70  * paragraph) shall be included in all copies or substantial portions of the
71  * Software.
72  *
73  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
74  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
75  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
76  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
77  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
78  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
79  * DEALINGS IN THE SOFTWARE.
80  *
81  * Author: Daniel Stone <daniel@fooishbar.org>
82  */
83 
84 import core.stdc.stdio : FILE;
85 
86 extern(C):
87 
88 /**
89  * @file
90  * Main libxkbcommon API.
91  */
92 
93 /**
94  * @struct xkb_context
95  * Opaque top level library context object.
96  *
97  * The context contains various general library data and state, like
98  * logging level and include paths.
99  *
100  * Objects are created in a specific context, and multiple contexts may
101  * coexist simultaneously.  Objects from different contexts are completely
102  * separated and do not share any memory or state.
103  */
104 struct xkb_context;
105 
106 /**
107  * @struct xkb_keymap
108  * Opaque compiled keymap object.
109  *
110  * The keymap object holds all of the static keyboard information obtained
111  * from compiling XKB files.
112  *
113  * A keymap is immutable after it is created (besides reference counts, etc.);
114  * if you need to change it, you must create a new one.
115  */
116 struct xkb_keymap;
117 
118 /**
119  * @struct xkb_state
120  * Opaque keyboard state object.
121  *
122  * State objects contain the active state of a keyboard (or keyboards), such
123  * as the currently effective layout and the active modifiers.  It acts as a
124  * simple state machine, wherein key presses and releases are the input, and
125  * key symbols (keysyms) are the output.
126  */
127 struct xkb_state;
128 
129 /**
130  * A number used to represent a physical key on a keyboard.
131  *
132  * A standard PC-compatible keyboard might have 102 keys.  An appropriate
133  * keymap would assign each of them a keycode, by which the user should
134  * refer to the key throughout the library.
135  *
136  * Historically, the X11 protocol, and consequentially the XKB protocol,
137  * assign only 8 bits for keycodes.  This limits the number of different
138  * keys that can be used simultaneously in a single keymap to 256
139  * (disregarding other limitations).  This library does not share this limit;
140  * keycodes beyond 255 ('extended keycodes') are not treated specially.
141  * Keymaps and applications which are compatible with X11 should not use
142  * these keycodes.
143  *
144  * The values of specific keycodes are determined by the keymap and the
145  * underlying input system.  For example, with an X11-compatible keymap
146  * and Linux evdev scan codes (see linux/input.h), a fixed offset is used:
147  *
148  * @code
149  * xkb_keycode_t keycode_A = KEY_A + 8;
150  * @endcode
151  *
152  * @sa xkb_keycode_is_legal_ext() xkb_keycode_is_legal_x11()
153  */
154 alias xkb_keycode_t = uint;
155 
156 /**
157  * A number used to represent the symbols generated from a key on a keyboard.
158  *
159  * A key, represented by a keycode, may generate different symbols according
160  * to keyboard state.  For example, on a QWERTY keyboard, pressing the key
161  * labled \<A\> generates the symbol 'a'.  If the Shift key is held, it
162  * generates the symbol 'A'.  If a different layout is used, say Greek,
163  * it generates the symbol 'α'.  And so on.
164  *
165  * Each such symbol is represented by a keysym.  Note that keysyms are
166  * somewhat more general, in that they can also represent some "function",
167  * such as "Left" or "Right" for the arrow keys.  For more information,
168  * see:
169  * http://www.x.org/releases/X11R7.7/doc/xproto/x11protocol.html#keysym_encoding
170  *
171  * Specifically named keysyms can be found in the
172  * xkbcommon/xkbcommon-keysyms.h header file.  Their name does not include
173  * the XKB_KEY_ prefix.
174  *
175  * Besides those, any Unicode/ISO 10646 character in the range U0100 to
176  * U10FFFF can be represented by a keysym value in the range 0x01000100 to
177  * 0x0110FFFF.  The name of Unicode keysyms is "U<codepoint>", e.g. "UA1B2".
178  *
179  * The name of other unnamed keysyms is the hexadecimal representation of
180  * their value, e.g. "0xabcd1234".
181  *
182  * Keysym names are case-sensitive.
183  */
184 alias xkb_keysym_t = uint;
185 
186 /**
187  * Index of a keyboard layout.
188  *
189  * The layout index is a state component which detemines which <em>keyboard
190  * layout</em> is active.  These may be different alphabets, different key
191  * arrangements, etc.
192  *
193  * Layout indices are consecutive.  The first layout has index 0.
194  *
195  * Each layout is not required to have a name, and the names are not
196  * guaranteed to be unique (though they are usually provided and unique).
197  * Therefore, it is not safe to use the name as a unique identifier for a
198  * layout.  Layout names are case-sensitive.
199  *
200  * Layouts are also called "groups" by XKB.
201  *
202  * @sa xkb_keymap_num_layouts() xkb_keymap_num_layouts_for_key()
203  */
204 alias xkb_layout_index_t = uint;
205 /** A mask of layout indices. */
206 alias xkb_layout_mask_t = uint;
207 
208 /**
209  * Index of a shift level.
210  *
211  * Any key, in any layout, can have several <em>shift levels</em>.  Each
212  * shift level can assign different keysyms to the key.  The shift level
213  * to use is chosen according to the current keyboard state; for example,
214  * if no keys are pressed, the first level may be used; if the Left Shift
215  * key is pressed, the second; if Num Lock is pressed, the third; and
216  * many such combinations are possible (see xkb_mod_index_t).
217  *
218  * Level indices are consecutive.  The first level has index 0.
219  */
220 alias xkb_level_index_t = uint;
221 
222 /**
223  * Index of a modifier.
224  *
225  * A @e modifier is a state component which changes the way keys are
226  * interpreted.  A keymap defines a set of modifiers, such as Alt, Shift,
227  * Num Lock or Meta, and specifies which keys may @e activate which
228  * modifiers (in a many-to-many relationship, i.e. a key can activate
229  * several modifiers, and a modifier may be activated by several keys.
230  * Different keymaps do this differently).
231  *
232  * When retrieving the keysyms for a key, the active modifier set is
233  * consulted; this detemines the correct shift level to use within the
234  * currently active layout (see xkb_level_index_t).
235  *
236  * Modifier indices are consecutive.  The first modifier has index 0.
237  *
238  * Each modifier must have a name, and the names are unique.  Therefore, it
239  * is safe to use the name as a unique identifier for a modifier.  The names
240  * of some common modifiers are provided in the xkbcommon/xkbcommon-names.h
241  * header file.  Modifier names are case-sensitive.
242  *
243  * @sa xkb_keymap_num_mods()
244  */
245 alias xkb_mod_index_t = uint;
246 /** A mask of modifier indices. */
247 alias xkb_mod_mask_t = uint;
248 
249 /**
250  * Index of a keyboard LED.
251  *
252  * LEDs are logical objects which may be @e active or @e inactive.  They
253  * typically correspond to the lights on the keyboard. Their state is
254  * determined by the current keyboard state.
255  *
256  * LED indices are non-consecutive.  The first LED has index 0.
257  *
258  * Each LED must have a name, and the names are unique. Therefore,
259  * it is safe to use the name as a unique identifier for a LED.  The names
260  * of some common LEDs are provided in the xkbcommon/xkbcommon-names.h
261  * header file.  LED names are case-sensitive.
262  *
263  * @warning A given keymap may specify an exact index for a given LED.
264  * Therefore, LED indexing is not necessarily sequential, as opposed to
265  * modifiers and layouts.  This means that when iterating over the LEDs
266  * in a keymap using e.g. xkb_keymap_num_leds(), some indices might be
267  * invalid.  Given such an index, functions like xkb_keymap_led_get_name()
268  * will return NULL, and xkb_state_led_index_is_active() will return -1.
269  *
270  * LEDs are also called "indicators" by XKB.
271  *
272  * @sa xkb_keymap_num_leds()
273  */
274 alias xkb_led_index_t = uint;
275 /** A mask of LED indices. */
276 alias xkb_led_mask_t = uint;
277 
278 enum XKB_KEYCODE_INVALID = 0xffffffff;
279 enum XKB_LAYOUT_INVALID  = 0xffffffff;
280 enum XKB_LEVEL_INVALID   = 0xffffffff;
281 enum XKB_MOD_INVALID     = 0xffffffff;
282 enum XKB_LED_INVALID     = 0xffffffff;
283 
284 enum XKB_KEYCODE_MAX     = 0xffffffff-1;
285 
286 /**
287  * Test whether a value is a valid extended keycode.
288  * @sa xkb_keycode_t
289  **/
290 extern(D)
291 auto xkb_keycode_is_legal_ext(K)(K key) {
292     return key <= XKB_KEYCODE_MAX;
293 }
294 
295 /**
296  * Test whether a value is a valid X11 keycode.
297  * @sa xkb_keycode_t
298  */
299 extern(D)
300 auto xkb_keycode_is_legal_x11(K)(K key) {
301     return key >= 8 && key <= 255;
302 }
303 
304 /**
305  * Names to compile a keymap with, also known as RMLVO.
306  *
307  * The names are the common configuration values by which a user picks
308  * a keymap.
309  *
310  * If the entire struct is NULL, then each field is taken to be NULL.
311  * You should prefer passing NULL instead of choosing your own defaults.
312  */
313 struct xkb_rule_names {
314     /**
315      * The rules file to use. The rules file describes how to interpret
316      * the values of the model, layout, variant and options fields.
317      *
318      * If NULL or the empty string "", a default value is used.
319      * If the XKB_DEFAULT_RULES environment variable is set, it is used
320      * as the default.  Otherwise the system default is used.
321      */
322     const(char) *rules;
323     /**
324      * The keyboard model by which to interpret keycodes and LEDs.
325      *
326      * If NULL or the empty string "", a default value is used.
327      * If the XKB_DEFAULT_MODEL environment variable is set, it is used
328      * as the default.  Otherwise the system default is used.
329      */
330     const(char) *model;
331     /**
332      * A comma separated list of layouts (languages) to include in the
333      * keymap.
334      *
335      * If NULL or the empty string "", a default value is used.
336      * If the XKB_DEFAULT_LAYOUT environment variable is set, it is used
337      * as the default.  Otherwise the system default is used.
338      */
339     const(char) *layout;
340     /**
341      * A comma separated list of variants, one per layout, which may
342      * modify or augment the respective layout in various ways.
343      *
344      * If NULL or the empty string "", and a default value is also used
345      * for the layout, a default value is used.  Otherwise no variant is
346      * used.
347      * If the XKB_DEFAULT_VARIANT environment variable is set, it is used
348      * as the default.  Otherwise the system default is used.
349      */
350     const(char) *variant;
351     /**
352      * A comma separated list of options, through which the user specifies
353      * non-layout related preferences, like which key combinations are used
354      * for switching layouts, or which key is the Compose key.
355      *
356      * If NULL, a default value is used.  If the empty string "", no
357      * options are used.
358      * If the XKB_DEFAULT_OPTIONS environment variable is set, it is used
359      * as the default.  Otherwise the system default is used.
360      */
361     const(char) *options;
362 }
363 
364 /**
365  * @defgroup keysyms Keysyms
366  * Utility functions related to keysyms.
367  *
368  * @{
369  */
370 
371 /**
372  * @page keysym-transformations Keysym Transformations
373  *
374  * Keysym translation is subject to several "keysym transformations",
375  * as described in the XKB specification.  These are:
376  *
377  * - Capitalization transformation.  If the Caps Lock modifier is
378  *   active and was not consumed by the translation process, a single
379  *   keysym is transformed to its upper-case form (if applicable).
380  *   Similarly, the UTF-8/UTF-32 string produced is capitalized.
381  *
382  *   This is described in:
383  *   http://www.x.org/releases/current/doc/kbproto/xkbproto.html#Interpreting_the_Lock_Modifier
384  *
385  * - Control transformation.  If the Control modifier is active and
386  *   was not consumed by the translation process, the string produced
387  *   is transformed to its matching ASCII control character (if
388  *   applicable).  Keysyms are not affected.
389  *
390  *   This is described in:
391  *   http://www.x.org/releases/current/doc/kbproto/xkbproto.html#Interpreting_the_Control_Modifier
392  *
393  * Each relevant function discusses which transformations it performs.
394  *
395  * These transformations are not applicable when a key produces multiple
396  * keysyms.
397  */
398 
399 
400 /**
401  * Get the name of a keysym.
402  *
403  * For a description of how keysyms are named, see @ref xkb_keysym_t.
404  *
405  * @param[in]  keysym The keysym.
406  * @param[out] buffer A string buffer to write the name into.
407  * @param[in]  size   Size of the buffer.
408  *
409  * @warning If the buffer passed is too small, the string is truncated
410  * (though still NUL-terminated); a size of at least 64 bytes is recommended.
411  *
412  * @returns The number of bytes in the name, excluding the NUL byte. If
413  * the keysym is invalid, returns -1.
414  *
415  * You may check if truncation has occurred by comparing the return value
416  * with the length of buffer, similarly to the snprintf(3) function.
417  *
418  * @sa xkb_keysym_t
419  */
420 int
421 xkb_keysym_get_name(xkb_keysym_t keysym, char *buffer, size_t size);
422 
423 /** Flags for xkb_keysym_from_name(). */
424 enum xkb_keysym_flags {
425     /** Do not apply any flags. */
426     XKB_KEYSYM_NO_FLAGS = 0,
427     /** Find keysym by case-insensitive search. */
428     XKB_KEYSYM_CASE_INSENSITIVE = (1 << 0)
429 }
430 alias XKB_KEYSYM_NO_FLAGS = xkb_keysym_flags.XKB_KEYSYM_NO_FLAGS;
431 alias XKB_KEYSYM_CASE_INSENSITIVE = xkb_keysym_flags.XKB_KEYSYM_CASE_INSENSITIVE;
432 
433 /**
434  * Get a keysym from its name.
435  *
436  * @param name The name of a keysym. See remarks in xkb_keysym_get_name();
437  * this function will accept any name returned by that function.
438  * @param flags A set of flags controlling how the search is done. If
439  * invalid flags are passed, this will fail with XKB_KEY_NoSymbol.
440  *
441  * If you use the XKB_KEYSYM_CASE_INSENSITIVE flag and two keysym names
442  * differ only by case, then the lower-case keysym is returned.  For
443  * instance, for KEY_a and KEY_A, this function would return KEY_a for the
444  * case-insensitive search.  If this functionality is needed, it is
445  * recommended to first call this function without this flag; and if that
446  * fails, only then to try with this flag, while possibly warning the user
447  * he had misspelled the name, and might get wrong results.
448  *
449  * @returns The keysym. If the name is invalid, returns XKB_KEY_NoSymbol.
450  *
451  * @sa xkb_keysym_t
452  */
453 xkb_keysym_t
454 xkb_keysym_from_name(const(char) *name, xkb_keysym_flags flags);
455 
456 /**
457  * Get the Unicode/UTF-8 representation of a keysym.
458  *
459  * @param[in]  keysym The keysym.
460  * @param[out] buffer A buffer to write the UTF-8 string into.
461  * @param[in]  size   The size of buffer.  Must be at least 7.
462  *
463  * @returns The number of bytes written to the buffer (including the
464  * terminating byte).  If the keysym does not have a Unicode
465  * representation, returns 0.  If the buffer is too small, returns -1.
466  *
467  * This function does not perform any @ref keysym-transformations.
468  * Therefore, prefer to use xkb_state_key_get_utf8() if possible.
469  *
470  * @sa xkb_state_key_get_utf8()
471  */
472 int
473 xkb_keysym_to_utf8(xkb_keysym_t keysym, char *buffer, size_t size);
474 
475 /**
476  * Get the Unicode/UTF-32 representation of a keysym.
477  *
478  * @returns The Unicode/UTF-32 representation of keysym, which is also
479  * compatible with UCS-4.  If the keysym does not have a Unicode
480  * representation, returns 0.
481  *
482  * This function does not perform any @ref keysym-transformations.
483  * Therefore, prefer to use xkb_state_key_get_utf32() if possible.
484  *
485  * @sa xkb_state_key_get_utf32()
486  */
487 uint
488 xkb_keysym_to_utf32(xkb_keysym_t keysym);
489 
490 /** @} */
491 
492 /**
493  * @defgroup context Library Context
494  * Creating, destroying and using library contexts.
495  *
496  * Every keymap compilation request must have a context associated with
497  * it.  The context keeps around state such as the include path.
498  *
499  * @{
500  */
501 
502 /** Flags for context creation. */
503 enum xkb_context_flags {
504     /** Do not apply any context flags. */
505     XKB_CONTEXT_NO_FLAGS = 0,
506     /** Create this context with an empty include path. */
507     XKB_CONTEXT_NO_DEFAULT_INCLUDES = (1 << 0),
508     /**
509      * Don't take RMLVO names from the environment.
510      * @since 0.3.0
511      */
512     XKB_CONTEXT_NO_ENVIRONMENT_NAMES = (1 << 1)
513 }
514 alias XKB_CONTEXT_NO_FLAGS = xkb_context_flags.XKB_CONTEXT_NO_FLAGS;
515 alias XKB_CONTEXT_NO_DEFAULT_INCLUDES = xkb_context_flags.XKB_CONTEXT_NO_DEFAULT_INCLUDES;
516 alias XKB_CONTEXT_NO_ENVIRONMENT_NAMES = xkb_context_flags.XKB_CONTEXT_NO_ENVIRONMENT_NAMES;
517 
518 /**
519  * Create a new context.
520  *
521  * @param flags Optional flags for the context, or 0.
522  *
523  * @returns A new context, or NULL on failure.
524  *
525  * The user may set some environment variables to affect default values in
526  * the context. See e.g. xkb_context_set_log_level() and
527  * xkb_context_set_log_verbosity().
528  *
529  * @memberof xkb_context
530  */
531 xkb_context *
532 xkb_context_new(xkb_context_flags flags);
533 
534 /**
535  * Take a new reference on a context.
536  *
537  * @returns The passed in context.
538  *
539  * @memberof xkb_context
540  */
541 xkb_context *
542 xkb_context_ref(xkb_context *context);
543 
544 /**
545  * Release a reference on a context, and possibly free it.
546  *
547  * @param context The context.  If it is NULL, this function does nothing.
548  *
549  * @memberof xkb_context
550  */
551 void
552 xkb_context_unref(xkb_context *context);
553 
554 /**
555  * Store custom user data in the context.
556  *
557  * This may be useful in conjunction with xkb_context_set_log_fn() or other
558  * callbacks.
559  *
560  * @memberof xkb_context
561  */
562 void
563 xkb_context_set_user_data(xkb_context *context, void *user_data);
564 
565 /**
566  * Retrieves stored user data from the context.
567  *
568  * @returns The stored user data.  If the user data wasn't set, or the
569  * passed in context is NULL, returns NULL.
570  *
571  * This may be useful to access private user data from callbacks like a
572  * custom logging function.
573  *
574  * @memberof xkb_context
575  **/
576 void *
577 xkb_context_get_user_data(xkb_context *context);
578 
579 /** @} */
580 
581 /**
582  * @defgroup include-path Include Paths
583  * Manipulating the include paths in a context.
584  *
585  * The include paths are the file-system paths that are searched when an
586  * include statement is encountered during keymap compilation.
587  * In most cases, the default include paths are sufficient.
588  *
589  * @{
590  */
591 
592 /**
593  * Append a new entry to the context's include path.
594  *
595  * @returns 1 on success, or 0 if the include path could not be added or is
596  * inaccessible.
597  *
598  * @memberof xkb_context
599  */
600 int
601 xkb_context_include_path_append(xkb_context *context, const(char) *path);
602 
603 /**
604  * Append the default include paths to the context's include path.
605  *
606  * @returns 1 on success, or 0 if the primary include path could not be added.
607  *
608  * @memberof xkb_context
609  */
610 int
611 xkb_context_include_path_append_default(xkb_context *context);
612 
613 /**
614  * Reset the context's include path to the default.
615  *
616  * Removes all entries from the context's include path, and inserts the
617  * default paths.
618  *
619  * @returns 1 on success, or 0 if the primary include path could not be added.
620  *
621  * @memberof xkb_context
622  */
623 int
624 xkb_context_include_path_reset_defaults(xkb_context *context);
625 
626 /**
627  * Remove all entries from the context's include path.
628  *
629  * @memberof xkb_context
630  */
631 void
632 xkb_context_include_path_clear(xkb_context *context);
633 
634 /**
635  * Get the number of paths in the context's include path.
636  *
637  * @memberof xkb_context
638  */
639 uint
640 xkb_context_num_include_paths(xkb_context *context);
641 
642 /**
643  * Get a specific include path from the context's include path.
644  *
645  * @returns The include path at the specified index.  If the index is
646  * invalid, returns NULL.
647  *
648  * @memberof xkb_context
649  */
650 const(char) *
651 xkb_context_include_path_get(xkb_context *context, uint index);
652 
653 /** @} */
654 
655 /**
656  * @defgroup logging Logging Handling
657  * Manipulating how logging from this library is handled.
658  *
659  * @{
660  */
661 
662 /** Specifies a logging level. */
663 enum xkb_log_level {
664     XKB_LOG_LEVEL_CRITICAL = 10, /**< Log critical internal errors only. */
665     XKB_LOG_LEVEL_ERROR = 20,    /**< Log all errors. */
666     XKB_LOG_LEVEL_WARNING = 30,  /**< Log warnings and errors. */
667     XKB_LOG_LEVEL_INFO = 40,     /**< Log information, warnings, and errors. */
668     XKB_LOG_LEVEL_DEBUG = 50     /**< Log everything. */
669 }
670 alias XKB_LOG_LEVEL_CRITICAL = xkb_log_level.XKB_LOG_LEVEL_CRITICAL;
671 alias XKB_LOG_LEVEL_ERROR = xkb_log_level.XKB_LOG_LEVEL_ERROR;
672 alias XKB_LOG_LEVEL_WARNING = xkb_log_level.XKB_LOG_LEVEL_WARNING;
673 alias XKB_LOG_LEVEL_INFO = xkb_log_level.XKB_LOG_LEVEL_INFO;
674 alias XKB_LOG_LEVEL_DEBUG = xkb_log_level.XKB_LOG_LEVEL_DEBUG;
675 
676 /**
677  * Set the current logging level.
678  *
679  * @param context The context in which to set the logging level.
680  * @param level   The logging level to use.  Only messages from this level
681  * and below will be logged.
682  *
683  * The default level is XKB_LOG_LEVEL_ERROR.  The environment variable
684  * XKB_LOG_LEVEL, if set in the time the context was created, overrides the
685  * default value.  It may be specified as a level number or name.
686  *
687  * @memberof xkb_context
688  */
689 void
690 xkb_context_set_log_level(xkb_context *context,
691                           xkb_log_level level);
692 
693 /**
694  * Get the current logging level.
695  *
696  * @memberof xkb_context
697  */
698 xkb_log_level
699 xkb_context_get_log_level(xkb_context *context);
700 
701 /**
702  * Sets the current logging verbosity.
703  *
704  * The library can generate a number of warnings which are not helpful to
705  * ordinary users of the library.  The verbosity may be increased if more
706  * information is desired (e.g. when developing a new keymap).
707  *
708  * The default verbosity is 0.  The environment variable XKB_LOG_VERBOSITY,
709  * if set in the time the context was created, overrides the default value.
710  *
711  * @param context   The context in which to use the set verbosity.
712  * @param verbosity The verbosity to use.  Currently used values are
713  * 1 to 10, higher values being more verbose.  0 would result in no verbose
714  * messages being logged.
715  *
716  * Most verbose messages are of level XKB_LOG_LEVEL_WARNING or lower.
717  *
718  * @memberof xkb_context
719  */
720 void
721 xkb_context_set_log_verbosity(xkb_context *context, int verbosity);
722 
723 /**
724  * Get the current logging verbosity of the context.
725  *
726  * @memberof xkb_context
727  */
728 int
729 xkb_context_get_log_verbosity(xkb_context *context);
730 
731 /**
732  * Set a custom function to handle logging messages.
733  *
734  * @param context The context in which to use the set logging function.
735  * @param log_fn  The function that will be called for logging messages.
736  * Passing NULL restores the default function, which logs to stderr.
737  *
738  * By default, log messages from this library are printed to stderr.  This
739  * function allows you to replace the default behavior with a custom
740  * handler.  The handler is only called with messages which match the
741  * current logging level and verbosity settings for the context.
742  * level is the logging level of the message.  @a format and @a args are
743  * the same as in the vprintf(3) function.
744  *
745  * You may use xkb_context_set_user_data() on the context, and then call
746  * xkb_context_get_user_data() from within the logging function to provide
747  * it with additional private context.
748  *
749  * @memberof xkb_context
750  */
751 private alias xkb_log_fn_t = void function(xkb_context *context,
752                                       xkb_log_level level,
753                                       const(char) *format, ...);
754 void
755 xkb_context_set_log_fn(xkb_context *context, xkb_log_fn_t log_fn);
756 
757 /** @} */
758 
759 /**
760  * @defgroup keymap Keymap Creation
761  * Creating and destroying keymaps.
762  *
763  * @{
764  */
765 
766 /** Flags for keymap compilation. */
767 enum xkb_keymap_compile_flags {
768     /** Do not apply any flags. */
769     XKB_KEYMAP_COMPILE_NO_FLAGS = 0
770 }
771 alias XKB_KEYMAP_COMPILE_NO_FLAGS = xkb_keymap_compile_flags.XKB_KEYMAP_COMPILE_NO_FLAGS;
772 
773 /**
774  * Create a keymap from RMLVO names.
775  *
776  * The primary keymap entry point: creates a new XKB keymap from a set of
777  * RMLVO (Rules + Model + Layouts + Variants + Options) names.
778  *
779  * @param context The context in which to create the keymap.
780  * @param names   The RMLVO names to use.  See xkb_rule_names.
781  * @param flags   Optional flags for the keymap, or 0.
782  *
783  * @returns A keymap compiled according to the RMLVO names, or NULL if
784  * the compilation failed.
785  *
786  * @sa xkb_rule_names
787  * @memberof xkb_keymap
788  */
789 xkb_keymap *
790 xkb_keymap_new_from_names(xkb_context *context,
791                           const(xkb_rule_names) *names,
792                           xkb_keymap_compile_flags flags);
793 
794 /** The possible keymap formats. */
795 enum xkb_keymap_format {
796     /** The current/classic XKB text format, as generated by xkbcomp -xkb. */
797     XKB_KEYMAP_FORMAT_TEXT_V1 = 1
798 }
799 alias XKB_KEYMAP_FORMAT_TEXT_V1 = xkb_keymap_format.XKB_KEYMAP_FORMAT_TEXT_V1;
800 
801 /**
802  * Create a keymap from a keymap file.
803  *
804  * @param context The context in which to create the keymap.
805  * @param file    The keymap file to compile.
806  * @param format  The text format of the keymap file to compile.
807  * @param flags   Optional flags for the keymap, or 0.
808  *
809  * @returns A keymap compiled from the given XKB keymap file, or NULL if
810  * the compilation failed.
811  *
812  * The file must contain a complete keymap.  For example, in the
813  * XKB_KEYMAP_FORMAT_TEXT_V1 format, this means the file must contain one
814  * top level '%xkb_keymap' section, which in turn contains other required
815  * sections.
816  *
817  * @memberof xkb_keymap
818  */
819 xkb_keymap *
820 xkb_keymap_new_from_file(xkb_context *context, FILE *file,
821                          xkb_keymap_format format,
822                          xkb_keymap_compile_flags flags);
823 
824 /**
825  * Create a keymap from a keymap string.
826  *
827  * This is just like xkb_keymap_new_from_file(), but instead of a file, gets
828  * the keymap as one enormous string.
829  *
830  * @see xkb_keymap_new_from_file()
831  * @memberof xkb_keymap
832  */
833 xkb_keymap *
834 xkb_keymap_new_from_string(xkb_context *context, const(char) *string,
835                            xkb_keymap_format format,
836                            xkb_keymap_compile_flags flags);
837 
838 /**
839  * Create a keymap from a memory buffer.
840  *
841  * This is just like xkb_keymap_new_from_string(), but takes a length argument
842  * so the input string does not have to be zero-terminated.
843  *
844  * @see xkb_keymap_new_from_string()
845  * @memberof xkb_keymap
846  * @since 0.3.0
847  */
848 xkb_keymap *
849 xkb_keymap_new_from_buffer(xkb_context *context, const(char) *buffer,
850                            size_t length, xkb_keymap_format format,
851                            xkb_keymap_compile_flags flags);
852 
853 /**
854  * Take a new reference on a keymap.
855  *
856  * @returns The passed in keymap.
857  *
858  * @memberof xkb_keymap
859  */
860 xkb_keymap *
861 xkb_keymap_ref(xkb_keymap *keymap);
862 
863 /**
864  * Release a reference on a keymap, and possibly free it.
865  *
866  * @param keymap The keymap.  If it is NULL, this function does nothing.
867  *
868  * @memberof xkb_keymap
869  */
870 void
871 xkb_keymap_unref(xkb_keymap *keymap);
872 
873 /**
874  * Get the keymap as a string in the format from which it was created.
875  * @sa xkb_keymap_get_as_string()
876  **/
877 enum XKB_KEYMAP_USE_ORIGINAL_FORMAT = cast(xkb_keymap_format)-1;
878 
879 /**
880  * Get the compiled keymap as a string.
881  *
882  * @param keymap The keymap to get as a string.
883  * @param format The keymap format to use for the string.  You can pass
884  * in the special value XKB_KEYMAP_USE_ORIGINAL_FORMAT to use the format
885  * from which the keymap was originally created.
886  *
887  * @returns The keymap as a NUL-terminated string, or NULL if unsuccessful.
888  *
889  * The returned string may be fed back into xkb_map_new_from_string() to get
890  * the exact same keymap (possibly in another process, etc.).
891  *
892  * The returned string is dynamically allocated and should be freed by the
893  * caller.
894  *
895  * @memberof xkb_keymap
896  */
897 char *
898 xkb_keymap_get_as_string(xkb_keymap *keymap,
899                          xkb_keymap_format format);
900 
901 /** @} */
902 
903 /**
904  * @defgroup components Keymap Components
905  * Enumeration of state components in a keymap.
906  *
907  * @{
908  */
909 
910 /**
911  * Get the minimum keycode in the keymap.
912  *
913  * @sa xkb_keycode_t
914  * @memberof xkb_keymap
915  * @since 0.3.1
916  */
917 xkb_keycode_t
918 xkb_keymap_min_keycode(xkb_keymap *keymap);
919 
920 /**
921  * Get the maximum keycode in the keymap.
922  *
923  * @sa xkb_keycode_t
924  * @memberof xkb_keymap
925  * @since 0.3.1
926  */
927 xkb_keycode_t
928 xkb_keymap_max_keycode(xkb_keymap *keymap);
929 
930 /**
931  * The iterator used by xkb_keymap_key_for_each().
932  *
933  * @sa xkb_keymap_key_for_each
934  * @memberof xkb_keymap
935  * @since 0.3.1
936  */
937 alias xkb_keymap_key_iter_t =
938         void function (xkb_keymap *keymap, xkb_keycode_t key, void *data);
939 
940 /**
941  * Run a specified function for every valid keycode in the keymap.  If a
942  * keymap is sparse, this function may be called fewer than
943  * (max_keycode - min_keycode + 1) times.
944  *
945  * @sa xkb_keymap_min_keycode() xkb_keymap_max_keycode() xkb_keycode_t
946  * @memberof xkb_keymap
947  * @since 0.3.1
948  */
949 void
950 xkb_keymap_key_for_each(xkb_keymap *keymap, xkb_keymap_key_iter_t iter,
951                         void *data);
952 
953 /**
954  * Get the number of modifiers in the keymap.
955  *
956  * @sa xkb_mod_index_t
957  * @memberof xkb_keymap
958  */
959 xkb_mod_index_t
960 xkb_keymap_num_mods(xkb_keymap *keymap);
961 
962 /**
963  * Get the name of a modifier by index.
964  *
965  * @returns The name.  If the index is invalid, returns NULL.
966  *
967  * @sa xkb_mod_index_t
968  * @memberof xkb_keymap
969  */
970 const(char) *
971 xkb_keymap_mod_get_name(xkb_keymap *keymap, xkb_mod_index_t idx);
972 
973 /**
974  * Get the index of a modifier by name.
975  *
976  * @returns The index.  If no modifier with this name exists, returns
977  * XKB_MOD_INVALID.
978  *
979  * @sa xkb_mod_index_t
980  * @memberof xkb_keymap
981  */
982 xkb_mod_index_t
983 xkb_keymap_mod_get_index(xkb_keymap *keymap, const(char) *name);
984 
985 /**
986  * Get the number of layouts in the keymap.
987  *
988  * @sa xkb_layout_index_t xkb_rule_names xkb_keymap_num_layouts_for_key()
989  * @memberof xkb_keymap
990  */
991 xkb_layout_index_t
992 xkb_keymap_num_layouts(xkb_keymap *keymap);
993 
994 /**
995  * Get the name of a layout by index.
996  *
997  * @returns The name.  If the index is invalid, or the layout does not have
998  * a name, returns NULL.
999  *
1000  * @sa xkb_layout_index_t
1001  * @memberof xkb_keymap
1002  */
1003 const(char) *
1004 xkb_keymap_layout_get_name(xkb_keymap *keymap, xkb_layout_index_t idx);
1005 
1006 /**
1007  * Get the index of a layout by name.
1008  *
1009  * @returns The index.  If no layout exists with this name, returns
1010  * XKB_LAYOUT_INVALID.  If more than one layout in the keymap has this name,
1011  * returns the lowest index among them.
1012  *
1013  * @memberof xkb_keymap
1014  */
1015 xkb_layout_index_t
1016 xkb_keymap_layout_get_index(xkb_keymap *keymap, const(char) *name);
1017 
1018 /**
1019  * Get the number of LEDs in the keymap.
1020  *
1021  * @warning The range [ 0...xkb_keymap_num_leds() ) includes all of the LEDs
1022  * in the keymap, but may also contain inactive LEDs.  When iterating over
1023  * this range, you need the handle this case when calling functions such as
1024  * xkb_keymap_led_get_name() or xkb_state_led_index_is_active().
1025  *
1026  * @sa xkb_led_index_t
1027  * @memberof xkb_keymap
1028  */
1029 xkb_led_index_t
1030 xkb_keymap_num_leds(xkb_keymap *keymap);
1031 
1032 /**
1033  * Get the name of a LED by index.
1034  *
1035  * @returns The name.  If the index is invalid, returns NULL.
1036  *
1037  * @memberof xkb_keymap
1038  */
1039 const(char) *
1040 xkb_keymap_led_get_name(xkb_keymap *keymap, xkb_led_index_t idx);
1041 
1042 /**
1043  * Get the index of a LED by name.
1044  *
1045  * @returns The index.  If no LED with this name exists, returns
1046  * XKB_LED_INVALID.
1047  *
1048  * @memberof xkb_keymap
1049  */
1050 xkb_led_index_t
1051 xkb_keymap_led_get_index(xkb_keymap *keymap, const(char) *name);
1052 
1053 /**
1054  * Get the number of layouts for a specific key.
1055  *
1056  * This number can be different from xkb_keymap_num_layouts(), but is always
1057  * smaller.  It is the appropriate value to use when iterating over the
1058  * layouts of a key.
1059  *
1060  * @sa xkb_layout_index_t
1061  * @memberof xkb_keymap
1062  */
1063 xkb_layout_index_t
1064 xkb_keymap_num_layouts_for_key(xkb_keymap *keymap, xkb_keycode_t key);
1065 
1066 /**
1067  * Get the number of shift levels for a specific key and layout.
1068  *
1069  * If @c layout is out of range for this key (that is, larger or equal to
1070  * the value returned by xkb_keymap_num_layouts_for_key()), it is brought
1071  * back into range in a manner consistent with xkb_state_key_get_layout().
1072  *
1073  * @sa xkb_level_index_t
1074  * @memberof xkb_keymap
1075  */
1076 xkb_level_index_t
1077 xkb_keymap_num_levels_for_key(xkb_keymap *keymap, xkb_keycode_t key,
1078                               xkb_layout_index_t layout);
1079 
1080 /**
1081  * Get the keysyms obtained from pressing a key in a given layout and
1082  * shift level.
1083  *
1084  * This function is like xkb_state_key_get_syms(), only the layout and
1085  * shift level are not derived from the keyboard state but are instead
1086  * specified explicitly.
1087  *
1088  * @param[in] keymap    The keymap.
1089  * @param[in] key       The keycode of the key.
1090  * @param[in] layout    The layout for which to get the keysyms.
1091  * @param[in] level     The shift level in the layout for which to get the
1092  * keysyms. This must be smaller than:
1093  * @code xkb_keymap_num_levels_for_key(keymap, key) @endcode
1094  * @param[out] syms_out An immutable array of keysyms corresponding to the
1095  * key in the given layout and shift level.
1096  *
1097  * If @c layout is out of range for this key (that is, larger or equal to
1098  * the value returned by xkb_keymap_num_layouts_for_key()), it is brought
1099  * back into range in a manner consistent with xkb_state_key_get_layout().
1100  *
1101  * @returns The number of keysyms in the syms_out array.  If no keysyms
1102  * are produced by the key in the given layout and shift level, returns 0
1103  * and sets syms_out to NULL.
1104  *
1105  * @sa xkb_state_key_get_syms()
1106  * @memberof xkb_keymap
1107  */
1108 int
1109 xkb_keymap_key_get_syms_by_level(xkb_keymap *keymap,
1110                                  xkb_keycode_t key,
1111                                  xkb_layout_index_t layout,
1112                                  xkb_level_index_t level,
1113                                  const(xkb_keysym_t*) *syms_out);
1114 
1115 /**
1116  * Determine whether a key should repeat or not.
1117  *
1118  * A keymap may specify different repeat behaviors for different keys.
1119  * Most keys should generally exhibit repeat behavior; for example, holding
1120  * the 'a' key down in a text editor should normally insert a single 'a'
1121  * character every few milliseconds, until the key is released.  However,
1122  * there are keys which should not or do not need to be repeated.  For
1123  * example, repeating modifier keys such as Left/Right Shift or Caps Lock
1124  * is not generally useful or desired.
1125  *
1126  * @returns 1 if the key should repeat, 0 otherwise.
1127  *
1128  * @memberof xkb_keymap
1129  */
1130 int
1131 xkb_keymap_key_repeats(xkb_keymap *keymap, xkb_keycode_t key);
1132 
1133 /** @} */
1134 
1135 /**
1136  * @defgroup state Keyboard State
1137  * Creating, destroying and manipulating keyboard state objects.
1138  *
1139  * @{
1140  */
1141 
1142 /**
1143  * Create a new keyboard state object.
1144  *
1145  * @param keymap The keymap which the state will use.
1146  *
1147  * @returns A new keyboard state object, or NULL on failure.
1148  *
1149  * @memberof xkb_state
1150  */
1151 xkb_state *
1152 xkb_state_new(xkb_keymap *keymap);
1153 
1154 /**
1155  * Take a new reference on a keyboard state object.
1156  *
1157  * @returns The passed in object.
1158  *
1159  * @memberof xkb_state
1160  */
1161 xkb_state *
1162 xkb_state_ref(xkb_state *state);
1163 
1164 /**
1165  * Release a reference on a keybaord state object, and possibly free it.
1166  *
1167  * @param state The state.  If it is NULL, this function does nothing.
1168  *
1169  * @memberof xkb_state
1170  */
1171 void
1172 xkb_state_unref(xkb_state *state);
1173 
1174 /**
1175  * Get the keymap which a keyboard state object is using.
1176  *
1177  * @returns The keymap which was passed to xkb_state_new() when creating
1178  * this state object.
1179  *
1180  * This function does not take a new reference on the keymap; you must
1181  * explicitly reference it yourself if you plan to use it beyond the
1182  * lifetime of the state.
1183  *
1184  * @memberof xkb_state
1185  */
1186 xkb_keymap *
1187 xkb_state_get_keymap(xkb_state *state);
1188 
1189 /** Specifies the direction of the key (press / release). */
1190 enum xkb_key_direction {
1191     XKB_KEY_UP,   /**< The key was released. */
1192     XKB_KEY_DOWN  /**< The key was pressed. */
1193 }
1194 alias XKB_KEY_UP = xkb_key_direction.XKB_KEY_UP;
1195 alias XKB_KEY_DOWN = xkb_key_direction.XKB_KEY_DOWN;
1196 
1197 /**
1198  * Modifier and layout types for state objects.  This enum is bitmaskable,
1199  * e.g. (XKB_STATE_MODS_DEPRESSED | XKB_STATE_MODS_LATCHED) is valid to
1200  * exclude locked modifiers.
1201  *
1202  * In XKB, the DEPRESSED components are also known as 'base'.
1203  */
1204 enum xkb_state_component {
1205     /** Depressed modifiers, i.e. a key is physically holding them. */
1206     XKB_STATE_MODS_DEPRESSED = (1 << 0),
1207     /** Latched modifiers, i.e. will be unset after the next non-modifier
1208      *  key press. */
1209     XKB_STATE_MODS_LATCHED = (1 << 1),
1210     /** Locked modifiers, i.e. will be unset after the key provoking the
1211      *  lock has been pressed again. */
1212     XKB_STATE_MODS_LOCKED = (1 << 2),
1213     /** Effective modifiers, i.e. currently active and affect key
1214      *  processing (derived from the other state components).
1215      *  Use this unless you explictly care how the state came about. */
1216     XKB_STATE_MODS_EFFECTIVE = (1 << 3),
1217     /** Depressed layout, i.e. a key is physically holding it. */
1218     XKB_STATE_LAYOUT_DEPRESSED = (1 << 4),
1219     /** Latched layout, i.e. will be unset after the next non-modifier
1220      *  key press. */
1221     XKB_STATE_LAYOUT_LATCHED = (1 << 5),
1222     /** Locked layout, i.e. will be unset after the key provoking the lock
1223      *  has been pressed again. */
1224     XKB_STATE_LAYOUT_LOCKED = (1 << 6),
1225     /** Effective layout, i.e. currently active and affects key processing
1226      *  (derived from the other state components).
1227      *  Use this unless you explictly care how the state came about. */
1228     XKB_STATE_LAYOUT_EFFECTIVE = (1 << 7),
1229     /** LEDs (derived from the other state components). */
1230     XKB_STATE_LEDS = (1 << 8)
1231 }
1232 alias XKB_STATE_MODS_DEPRESSED = xkb_state_component.XKB_STATE_MODS_DEPRESSED;
1233 alias XKB_STATE_MODS_LATCHED = xkb_state_component.XKB_STATE_MODS_LATCHED;
1234 alias XKB_STATE_MODS_LOCKED = xkb_state_component.XKB_STATE_MODS_LOCKED;
1235 alias XKB_STATE_MODS_EFFECTIVE = xkb_state_component.XKB_STATE_MODS_EFFECTIVE;
1236 alias XKB_STATE_LAYOUT_DEPRESSED = xkb_state_component.XKB_STATE_LAYOUT_DEPRESSED;
1237 alias XKB_STATE_LAYOUT_LATCHED = xkb_state_component.XKB_STATE_LAYOUT_LATCHED;
1238 alias XKB_STATE_LAYOUT_LOCKED = xkb_state_component.XKB_STATE_LAYOUT_LOCKED;
1239 alias XKB_STATE_LAYOUT_EFFECTIVE = xkb_state_component.XKB_STATE_LAYOUT_EFFECTIVE;
1240 
1241 /**
1242  * Update the keyboard state to reflect a given key being pressed or
1243  * released.
1244  *
1245  * This entry point is intended for programs which track the keyboard state
1246  * explictly (like an evdev client).  If the state is serialized to you by
1247  * a master process (like a Wayland compositor) using functions like
1248  * xkb_state_serialize_mods(), you should use xkb_state_update_mask() instead.
1249  * The two functins should not generally be used together.
1250  *
1251  * A series of calls to this function should be consistent; that is, a call
1252  * with XKB_KEY_DOWN for a key should be matched by an XKB_KEY_UP; if a key
1253  * is pressed twice, it should be released twice; etc. Otherwise (e.g. due
1254  * to missed input events), situations like "stuck modifiers" may occur.
1255  *
1256  * This function is often used in conjunction with the function
1257  * xkb_state_key_get_syms() (or xkb_state_key_get_one_sym()), for example,
1258  * when handling a key event.  In this case, you should prefer to get the
1259  * keysyms *before* updating the key, such that the keysyms reported for
1260  * the key event are not affected by the event itself.  This is the
1261  * conventional behavior.
1262  *
1263  * @returns A mask of state components that have changed as a result of
1264  * the update.  If nothing in the state has changed, returns 0.
1265  *
1266  * @memberof xkb_state
1267  *
1268  * @sa xkb_state_update_mask()
1269  */
1270 xkb_state_component
1271 xkb_state_update_key(xkb_state *state, xkb_keycode_t key,
1272                      xkb_key_direction direction);
1273 
1274 /**
1275  * Update a keyboard state from a set of explicit masks.
1276  *
1277  * This entry point is intended for window systems and the like, where a
1278  * master process holds an xkb_state, then serializes it over a wire
1279  * protocol, and clients then use the serialization to feed in to their own
1280  * xkb_state.
1281  *
1282  * All parameters must always be passed, or the resulting state may be
1283  * incoherent.
1284  *
1285  * The serialization is lossy and will not survive round trips; it must only
1286  * be used to feed slave state objects, and must not be used to update the
1287  * master state.
1288  *
1289  * If you do not fit the description above, you should use
1290  * xkb_state_update_key() instead.  The two functions should not generally be
1291  * used together.
1292  *
1293  * @returns A mask of state components that have changed as a result of
1294  * the update.  If nothing in the state has changed, returns 0.
1295  *
1296  * @memberof xkb_state
1297  *
1298  * @sa xkb_state_component
1299  * @sa xkb_state_update_key
1300  */
1301 xkb_state_component
1302 xkb_state_update_mask(xkb_state *state,
1303                       xkb_mod_mask_t depressed_mods,
1304                       xkb_mod_mask_t latched_mods,
1305                       xkb_mod_mask_t locked_mods,
1306                       xkb_layout_index_t depressed_layout,
1307                       xkb_layout_index_t latched_layout,
1308                       xkb_layout_index_t locked_layout);
1309 
1310 /**
1311  * Get the keysyms obtained from pressing a particular key in a given
1312  * keyboard state.
1313  *
1314  * Get the keysyms for a key according to the current active layout,
1315  * modifiers and shift level for the key, as determined by a keyboard
1316  * state.
1317  *
1318  * @param[in]  state    The keyboard state object.
1319  * @param[in]  key      The keycode of the key.
1320  * @param[out] syms_out An immutable array of keysyms corresponding the
1321  * key in the given keyboard state.
1322  *
1323  * As an extension to XKB, this function can return more than one keysym.
1324  * If you do not want to handle this case, you can use
1325  * xkb_state_key_get_one_sym() for a simpler interface.
1326  *
1327  * This function does not perform any @ref keysym-transformations.
1328  * (This might change).
1329  *
1330  * @returns The number of keysyms in the syms_out array.  If no keysyms
1331  * are produced by the key in the given keyboard state, returns 0 and sets
1332  * syms_out to NULL.
1333  *
1334  * @memberof xkb_state
1335  */
1336 int
1337 xkb_state_key_get_syms(xkb_state *state, xkb_keycode_t key,
1338                        const(xkb_keysym_t*) *syms_out);
1339 
1340 /**
1341  * Get the Unicode/UTF-8 string obtained from pressing a particular key
1342  * in a given keyboard state.
1343  *
1344  * @param[in]  state  The keyboard state object.
1345  * @param[in]  key    The keycode of the key.
1346  * @param[out] buffer A buffer to write the string into.
1347  * @param[in]  size   Size of the buffer.
1348  *
1349  * @warning If the buffer passed is too small, the string is truncated
1350  * (though still NUL-terminated).
1351  *
1352  * @returns The number of bytes required for the string, excluding the
1353  * NUL byte.  If there is nothing to write, returns 0.
1354  *
1355  * You may check if truncation has occurred by comparing the return value
1356  * with the size of @p buffer, similarly to the snprintf(3) function.
1357  * You may safely pass NULL and 0 to @p buffer and @p size to find the
1358  * required size (without the NUL-byte).
1359  *
1360  * This function performs Capitalization and Control @ref
1361  * keysym-transformations.
1362  *
1363  * @memberof xkb_state
1364  * @since 0.4.1
1365  */
1366 int
1367 xkb_state_key_get_utf8(xkb_state *state, xkb_keycode_t key,
1368                        char *buffer, size_t size);
1369 
1370 /**
1371  * Get the Unicode/UTF-32 codepoint obtained from pressing a particular
1372  * key in a a given keyboard state.
1373  *
1374  * @returns The UTF-32 representation for the key, if it consists of only
1375  * a single codepoint.  Otherwise, returns 0.
1376  *
1377  * This function performs Capitalization and Control @ref
1378  * keysym-transformations.
1379  *
1380  * @memberof xkb_state
1381  * @since 0.4.1
1382  */
1383 uint
1384 xkb_state_key_get_utf32(xkb_state *state, xkb_keycode_t key);
1385 
1386 /**
1387  * Get the single keysym obtained from pressing a particular key in a
1388  * given keyboard state.
1389  *
1390  * This function is similar to xkb_state_key_get_syms(), but intended
1391  * for users which cannot or do not want to handle the case where
1392  * multiple keysyms are returned (in which case this function is
1393  * preferred).
1394  *
1395  * @returns The keysym.  If the key does not have exactly one keysym,
1396  * returns XKB_KEY_NoSymbol
1397  *
1398  * This function performs Capitalization @ref keysym-transformations.
1399  *
1400  * @sa xkb_state_key_get_syms()
1401  * @memberof xkb_state
1402  */
1403 xkb_keysym_t
1404 xkb_state_key_get_one_sym(xkb_state *state, xkb_keycode_t key);
1405 
1406 /**
1407  * Get the effective layout index for a key in a given keyboard state.
1408  *
1409  * @returns The layout index for the key in the given keyboard state.  If
1410  * the given keycode is invalid, or if the key is not included in any
1411  * layout at all, returns XKB_LAYOUT_INVALID.
1412  *
1413  * @invariant If the returned layout is valid, the following always holds:
1414  * @code
1415  * xkb_state_key_get_layout(state, key) < xkb_keymap_num_layouts_for_key(keymap, key)
1416  * @endcode
1417  *
1418  * @memberof xkb_state
1419  */
1420 xkb_layout_index_t
1421 xkb_state_key_get_layout(xkb_state *state, xkb_keycode_t key);
1422 
1423 /**
1424  * Get the effective shift level for a key in a given keyboard state and
1425  * layout.
1426  *
1427  * @param state The keyboard state.
1428  * @param key The keycode of the key.
1429  * @param layout The layout for which to get the shift level.  This must be
1430  * smaller than:
1431  * @code xkb_keymap_num_layouts_for_key(keymap, key) @endcode
1432  * usually it would be:
1433  * @code xkb_state_key_get_layout(state, key) @endcode
1434  *
1435  * @return The shift level index.  If the key or layout are invalid,
1436  * returns XKB_LEVEL_INVALID.
1437  *
1438  * @invariant If the returned level is valid, the following always holds:
1439  * @code
1440  * xkb_state_key_get_level(state, key, layout) < xkb_keymap_num_levels_for_key(keymap, key, layout)
1441  * @endcode
1442  *
1443  * @memberof xkb_state
1444  */
1445 xkb_level_index_t
1446 xkb_state_key_get_level(xkb_state *state, xkb_keycode_t key,
1447                         xkb_layout_index_t layout);
1448 
1449 /**
1450  * Match flags for xkb_state_mod_indices_are_active() and
1451  * xkb_state_mod_names_are_active(), specifying the conditions for a
1452  * successful match.  XKB_STATE_MATCH_NON_EXCLUSIVE is bitmaskable with
1453  * the other modes.
1454  */
1455 enum xkb_state_match {
1456     /** Returns true if any of the modifiers are active. */
1457     XKB_STATE_MATCH_ANY = (1 << 0),
1458     /** Returns true if all of the modifiers are active. */
1459     XKB_STATE_MATCH_ALL = (1 << 1),
1460     /** Makes matching non-exclusive, i.e. will not return false if a
1461      *  modifier not specified in the arguments is active. */
1462     XKB_STATE_MATCH_NON_EXCLUSIVE = (1 << 16)
1463 }
1464 alias XKB_STATE_MATCH_ANY = xkb_state_match.XKB_STATE_MATCH_ANY;
1465 alias XKB_STATE_MATCH_ALL = xkb_state_match.XKB_STATE_MATCH_ALL;
1466 alias XKB_STATE_MATCH_NON_EXCLUSIVE = xkb_state_match.XKB_STATE_MATCH_NON_EXCLUSIVE;
1467 
1468 /**
1469  * The counterpart to xkb_state_update_mask for modifiers, to be used on
1470  * the server side of serialization.
1471  *
1472  * @param state      The keyboard state.
1473  * @param components A mask of the modifier state components to serialize.
1474  * State components other than XKB_STATE_MODS_* are ignored.
1475  * If XKB_STATE_MODS_EFFECTIVE is included, all other state components are
1476  * ignored.
1477  *
1478  * @returns A xkb_mod_mask_t representing the given components of the
1479  * modifier state.
1480  *
1481  * This function should not be used in regular clients; please use the
1482  * xkb_state_mod_*_is_active API instead.
1483  *
1484  * @memberof xkb_state
1485  */
1486 xkb_mod_mask_t
1487 xkb_state_serialize_mods(xkb_state *state,
1488                          xkb_state_component components);
1489 
1490 /**
1491  * The counterpart to xkb_state_update_mask for layouts, to be used on
1492  * the server side of serialization.
1493  *
1494  * @param state      The keyboard state.
1495  * @param components A mask of the layout state components to serialize.
1496  * State components other than XKB_STATE_LAYOUT_* are ignored.
1497  * If XKB_STATE_LAYOUT_EFFECTIVE is included, all other state components are
1498  * ignored.
1499  *
1500  * @returns A layout index representing the given components of the
1501  * layout state.
1502  *
1503  * This function should not be used in regular clients; please use the
1504  * xkb_state_layout_*_is_active API instead.
1505  *
1506  * @memberof xkb_state
1507  */
1508 xkb_layout_index_t
1509 xkb_state_serialize_layout(xkb_state *state,
1510                            xkb_state_component components);
1511 
1512 /**
1513  * Test whether a modifier is active in a given keyboard state by name.
1514  *
1515  * @returns 1 if the modifier is active, 0 if it is not.  If the modifier
1516  * name does not exist in the keymap, returns -1.
1517  *
1518  * @memberof xkb_state
1519  */
1520 int
1521 xkb_state_mod_name_is_active(xkb_state *state, const(char) *name,
1522                              xkb_state_component type);
1523 
1524 /**
1525  * Test whether a set of modifiers are active in a given keyboard state by
1526  * name.
1527  *
1528  * @param state The keyboard state.
1529  * @param type  The component of the state against which to match the
1530  * given modifiers.
1531  * @param match The manner by which to match the state against the
1532  * given modifiers.
1533  * @param ...   The set of of modifier names to test, terminated by a NULL
1534  * argument (sentinel).
1535  *
1536  * @returns 1 if the modifiers are active, 0 if they are not.  If any of
1537  * the modifier names do not exist in the keymap, returns -1.
1538  *
1539  * @memberof xkb_state
1540  */
1541 int
1542 xkb_state_mod_names_are_active(xkb_state *state,
1543                                xkb_state_component type,
1544                                xkb_state_match match,
1545                                ...);
1546 
1547 /**
1548  * Test whether a modifier is active in a given keyboard state by index.
1549  *
1550  * @returns 1 if the modifier is active, 0 if it is not.  If the modifier
1551  * index is invalid in the keymap, returns -1.
1552  *
1553  * @memberof xkb_state
1554  */
1555 int
1556 xkb_state_mod_index_is_active(xkb_state *state, xkb_mod_index_t idx,
1557                               xkb_state_component type);
1558 
1559 /**
1560  * Test whether a set of modifiers are active in a given keyboard state by
1561  * index.
1562  *
1563  * @param state The keyboard state.
1564  * @param type  The component of the state against which to match the
1565  * given modifiers.
1566  * @param match The manner by which to match the state against the
1567  * given modifiers.
1568  * @param ...   The set of of modifier indices to test, terminated by a
1569  * XKB_MOD_INVALID argument (sentinel).
1570  *
1571  * @returns 1 if the modifiers are active, 0 if they are not.  If any of
1572  * the modifier indices are invalid in the keymap, returns -1.
1573  *
1574  * @memberof xkb_state
1575  */
1576 int
1577 xkb_state_mod_indices_are_active(xkb_state *state,
1578                                  xkb_state_component type,
1579                                  xkb_state_match match,
1580                                  ...);
1581 
1582 /**
1583  * @page consumed-modifiers Consumed Modifiers
1584  * @parblock
1585  *
1586  * Some functions, like xkb_state_key_get_syms(), look at the state of
1587  * the modifiers in the keymap and derive from it the correct shift level
1588  * to use for the key.  For example, in a US layout, pressing the key
1589  * labeled \<A\> while the Shift modifier is active, generates the keysym
1590  * 'A'.  In this case, the Shift modifier is said to be "consumed".
1591  * However, the Num Lock modifier does not affect this translation at all,
1592  * even if it is active, so it is not consumed by this translation.
1593  *
1594  * It may be desirable for some application to not reuse consumed modifiers
1595  * for further processing, e.g. for hotkeys or keyboard shortcuts.  To
1596  * understand why, consider some requirements from a standard shortcut
1597  * mechanism, and how they are implemented:
1598  *
1599  * 1. The shortcut's modifiers must match exactly to the state.  For
1600  *    example, it is possible to bind separate actions to \<Alt\>\<Tab\>
1601  *    and to \<Alt\>\<Shift\>\<Tab\>.  Further, if only \<Alt\>\<Tab\> is
1602  *    bound to an action, pressing \<Alt\>\<Shift\>\<Tab\> should not
1603  *    trigger the shortcut.
1604  *    Effectively, this means that the modifiers are compared using the
1605  *    equality operator (==).
1606  *
1607  * 2. Only relevant modifiers are considered for the matching.  For example,
1608  *    Caps Lock and Num Lock should not generally affect the matching, e.g.
1609  *    when matching \<Alt\>\<Tab\> against the state, it does not matter
1610  *    whether Num Lock is active or not.  These relevant, or "significant",
1611  *    modifiers usually include Alt, Control, Shift, Super and similar.
1612  *    Effectively, this means that non-significant modifiers are masked out,
1613  *    before doing the comparison as described above.
1614  *
1615  * 3. The matching must be independent of the layout/keymap.  For example,
1616  *    the \<Plus\> (+) symbol is found on the first level on some layouts,
1617  *    but requires holding Shift on others.  If you simply bind the action
1618  *    to the \<Plus\> keysym, it would work for the unshifted kind, but
1619  *    not for the others, because the match against Shift would fail.  If
1620  *    you bind the action to \<Shift\>\<Plus\>, only the shifted kind would
1621  *    work.  So what is needed is to recognize that Shift is used up in the
1622  *    translation of the keysym itself, and therefore should not be included
1623  *    in the matching.
1624  *    Effectively, this means that consumed modifiers (Shift in this example)
1625  *    are masked out as well, before doing the comparison.
1626  *
1627  * In summary, this is how the matching would be performed:
1628  * @code
1629  *   (keysym == shortcut_keysym) &&
1630  *   ((state_mods & ~consumed_mods & significant_mods) == shortcut_mods)
1631  * @endcode
1632  *
1633  * @c state_mods are the modifiers reported by
1634  * xkb_state_mod_index_is_active() and similar functions.
1635  * @c consumed_mods are the modifiers reported by
1636  * xkb_state_mod_index_is_consumed() and similar functions.
1637  * @c significant_mods are decided upon by the application/toolkit/user;
1638  * it is up to them to decide whether these are configurable or hard-coded.
1639  *
1640  * @endparblock
1641  */
1642 
1643 /**
1644  * Test whether a modifier is consumed by keyboard state translation for
1645  * a key.
1646  *
1647  * @returns 1 if the modifier is consumed, 0 if it is not.  If the modifier
1648  * index is not valid in the keymap, returns -1.
1649  *
1650  * @sa xkb_state_mod_mask_remove_consumed()
1651  * @sa xkb_state_key_get_consumed_mods()
1652  * @memberof xkb_state
1653  */
1654 int
1655 xkb_state_mod_index_is_consumed(xkb_state *state, xkb_keycode_t key,
1656                                 xkb_mod_index_t idx);
1657 
1658 /**
1659  * Remove consumed modifiers from a modifier mask for a key.
1660  *
1661  * Takes the given modifier mask, and removes all modifiers which are
1662  * consumed for that particular key (as in xkb_state_mod_index_is_consumed()).
1663  *
1664  * @sa xkb_state_mod_index_is_consumed()
1665  * @memberof xkb_state
1666  */
1667 xkb_mod_mask_t
1668 xkb_state_mod_mask_remove_consumed(xkb_state *state, xkb_keycode_t key,
1669                                    xkb_mod_mask_t mask);
1670 
1671 /**
1672  * Get the mask of modifiers consumed by translating a given key.
1673  *
1674  * @returns a mask of the consumed modifiers.
1675  *
1676  * @sa xkb_state_mod_index_is_consumed()
1677  * @memberof xkb_state
1678  * @since 0.4.1
1679  */
1680 xkb_mod_mask_t
1681 xkb_state_key_get_consumed_mods(xkb_state *state, xkb_keycode_t key);
1682 
1683 /**
1684  * Test whether a layout is active in a given keyboard state by name.
1685  *
1686  * @returns 1 if the layout is active, 0 if it is not.  If no layout with
1687  * this name exists in the keymap, return -1.
1688  *
1689  * If multiple layouts in the keymap have this name, the one with the lowest
1690  * index is tested.
1691  *
1692  * @sa xkb_layout_index_t
1693  * @memberof xkb_state
1694  */
1695 int
1696 xkb_state_layout_name_is_active(xkb_state *state, const(char) *name,
1697                                 xkb_state_component type);
1698 
1699 /**
1700  * Test whether a layout is active in a given keyboard state by index.
1701  *
1702  * @returns 1 if the layout is active, 0 if it is not.  If the layout index
1703  * is not valid in the keymap, returns -1.
1704  *
1705  * @sa xkb_layout_index_t
1706  * @memberof xkb_state
1707  */
1708 int
1709 xkb_state_layout_index_is_active(xkb_state *state,
1710                                  xkb_layout_index_t idx,
1711                                  xkb_state_component type);
1712 
1713 /**
1714  * Test whether a LED is active in a given keyboard state by name.
1715  *
1716  * @returns 1 if the LED is active, 0 if it not.  If no LED with this name
1717  * exists in the keymap, returns -1.
1718  *
1719  * @sa xkb_led_index_t
1720  * @memberof xkb_state
1721  */
1722 int
1723 xkb_state_led_name_is_active(xkb_state *state, const(char) *name);
1724 
1725 /**
1726  * Test whether a LED is active in a given keyboard state by index.
1727  *
1728  * @returns 1 if the LED is active, 0 if it not.  If the LED index is not
1729  * valid in the keymap, returns -1.
1730  *
1731  * @sa xkb_led_index_t
1732  * @memberof xkb_state
1733  */
1734 int
1735 xkb_state_led_index_is_active(xkb_state *state, xkb_led_index_t idx);
1736 
1737